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 $354 B electricity sales

 166,000 miles operated by 500 companies

98% AC, voltages > 100kV

 3 major interconnections

 3,170 utility companies

 Over 140 control areas

 14,000 transmission substations

 ~44 million liquid-immersed distribution 

transformers in service in 1995

 ~12 million dry transformers

Electricity Transmission

Sources: 1996 ORNL, “Determination Analysis of Energy Conservation Standards for Distribution 
Transformers”; and DoE Office of Electricity  Delivery and Energy Reliability
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As demand increases…

…day-ahead market & spot market coordinate additional generation

…generator spins up: coal/nuclear /gas (day-ahead), gas (spot market)

…power flows into the grid

…electrons flow along path of least resistance

…the load draws power from the grid

?

Delivering Electricity
Load
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?
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• Negligible storage – just in time delivery of power

• Centrally controlled

• Negligible control of path – Joules are indistinguishable

Delivering Electricity

Not the 
internet
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Drivers for Change

ARPA-E Workshop

The White Space

5
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Increasingly Unreliable

 128 Blackouts in 2009

 Costs (US) at $79 Billion annually –
22% of annual US electricity sales
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Aging Infrastructure

“average generating station was built in the 1960s using even older technology.

“average age of a substation transformer is 42, 2 years more than…life span.”
Source: Galvin Electricity Initiative

2009 Report Card for America's 
Infrastructure
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Renewable portfolio standard

Renewable portfolio goal

December 2010

*† 
Extra credit for solar or customer-sited renewables

Includes non-renewable alternative resources

WA: 15% x 2020*

CA: 33% x 2020

NV: 25% x 2025*

AZ: 15% x 2025

NM: 20% x 2020 (IOUs)
10% x 2020 (co-ops)

HI: 40% x 2030

Minimum solar or customer-sited requirement

TX: 5,880 MW x 2015

UT: 20% by 2025*

CO: 30% by 2020 (IOUs)
10% by 2020 (co-ops & large munis)*

MT: 15% x 2015

ND: 10% x 2015

SD: 10% x 2015

IA: 105 MW

MN: 25% x 2025
(Xcel: 30% x 2020)

MO: 15% x 2021

WI: Varies by utility; 
10% x 2015 statewide

MI: 10% + 1,100 MW 
x 2015*

OH: 25% x 2025†

ME: 30% x 2000
New RE: 10% x 2017 

NH: 23.8% x 2025

MA: 22.1% x 2020 
New RE:  15% x 2020

(+1% annually thereafter)

RI: 16% x 2020

CT: 23% x 2020
NY: 29% x 2015

NJ: 22.5% x 2021

PA: ~18% x 2021†

MD: 20% x 2022

DE: 25% x 2026*

DC: 20% x 2020NC: 12.5% x 2021 (IOUs)
10% x 2018 (co-ops & munis)

VT: (1) RE meets any increase 
in retail sales x 2012;

(2) 20% RE & CHP x 2017

KS: 20% x 2020

OR: 25% x 2025 (large utilities)*
5% - 10% x 2025 (smaller utilities)

IL: 25% x 2025

29 states + 
DC and PR have 

an RPS
(7 states have goals)

OK: 15% x 2015

PR: 20% x 2035

WV: 25% x 2025*†
VA: 15% x 2025*

DC

www.dsireusa.org

Proliferation of non-dispatchable generation

Increasingly Unpredictable

http://www.dsireusa.org/�
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Increasingly Unpredictable

Existing Grid
Worst case week: Western Wind and Solar Integration Study

35% Wind

Source: Debra Lew, 2010 Western Wind and Solar Integration Study
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Congested Lines

Long Lines (>150 mi)
Stability limits

Long Lines (150 mi)
Thermal limits

Congestion :: denial of incremental transmission
Source: May 2002 DoE National Transmission Grid Study
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Inefficient Markets

11

Location marginal pricing
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Drivers for Change

ARPA-E Workshop

The White Space

12

How do we make a more flexible, controllable electricity grid?
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Academia (power systems)
4 participants
Presentation: Deepak Divan, GTech
“Dynamic control of grid assets”

Government
18 participants (10 from national labs, 5 DOE, NSF, NIST)
Presentation: Debra Lew, Senior Project Lead NREL
“Western Wind and Solar Integration Study”

Utility/RTO
7 participants
Presentation: Terry Oliver, CTO BPA
“Integrating Renewable Resources 
into the Electric Grid”

Workshop Overview

Vendors
9 participants
Presentation: Le Tang, CTO ABB
“Future Transmission, HVDC &FACTS”

Academia (control)
12 participants
Presentation: Munther Dahleh, MIT
“Network control”



Advanced Research Projects Agency • Energy 14

Control Theory Control Engineering

Edge Hardware
Transmission 

Hardware

linear

convex

Centralized

VAR Support
HVAC
Mesh

Scheduling

Point-point
HVDC

Storage

Workshop Findings
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Control Theory

PlantControllerΣ

Demand

Actuator

Reference Value

Objective:

• Generated Power = Power into Load

• Reliability, Cost, Frequency Control, Voltage Level, etc

Control = Sensing + Computation + Actuation
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IVP = VoltageCurrentPower ⋅=

Control Variables

time

VOLTAGE

CURRENT

REAL POWER

time

REACTIVE POWER

Voltage Waveform & Current Waveform

or

Real Power &  Reactive Power

Energy 
flow 

reversed
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I = Y V

Y (inductance of line)
sets change in phase

Real and Reactive Power Conversion
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= x

I =    Y         Vx

Designing Power Flow

3

3

1

1
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= x

I =    Y         Vx

Minimizing the cost of fuel to deliver power is Hard (NP)
Must search through many choices of generator outputs for achieving a desired load

Controlling Power Flow

What kind of control?
• Linear vs. Non-linear  [Generators deliver Power = I*V]
• Deterministic vs. Stochastic [Can’t predict when a load comes on-line]
• Time-invariant vs. Time-varying [Impedances change]
• Continuous-time vs. Discrete-time
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Controlling Power Flow

PlantControllerΣ

Demand

Transducer

Reference Value

Power Flow Control

• Feed-forward control
• Assume:

- Linear
- Deterministic
- Time Invariant

• Central control

Error (Frequency, Voltage)

• Feedback control
• Account for 

- Non-linearity
- Dynamics

• Distributed or  local control
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Control Infrastructure

A PMU measures
• Current (Hall sensor)
• Frequency (LC Circuit)
• Time (GPS)
• Voltage
• Relative Phase
• Sample 30 msec

Improved Sensing Improved Communications

Improved Computation

Grid Connected Router
• Low-latency
• MPLS
• Cyber security
• 100-600 µs For crypto

Distributed computing
• Fast
• Secure
• Resilient
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Control Challenges

(Developed since 2005)

S.K. Korotky, JLT 22(3), 2004.
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Control Theory Control Engineering

Edge Hardware
Transmission 

Hardware

Network 
control

Architecture
(protocols, 

etc)

linear

convex

Dynamic

Real-time

Routing

Centralized

VAR Support
HVAC
Mesh

Scheduling

Point-point
HVDC

Storage

Workshop Findings
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Actuators

PlantControllerΣ

Demand

Actuator

Reference Value
Demand Response

Schedule demand 
(eg. large industrial loads)

Control in the Grid
Flexible AC Transmission System:

•Static VAR
•STATCOM

•UPFC
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765 kV

Power Flow Controller (AC)
AC Univesal Power Flow Controller 

Global Total = 3 Cost=$140/W

Transformer

Transformer
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• $5.2 B (5 phases)

• Offshore multi-terminal voltage-sourced 
converter (VSCs) backbone

• 6000 MWs of offshore wind farms in federal 
waters off of NJ, DE, MD & VA

• PJM Total Peak Load = 144,644 MW

• Funded by Google, Good Energy & Marubeni 
Power

• Optimal power flow scheduling over 2000-
MW transfer capability

• Adds 2 independent transmission circuits 

into PJM

• First phase energization: 2016

Multiterminal HVDC
Cost=$900/W  Line=$1M/MW.mi Term=$250k/MW 

Power Flow Controller (DC)

Source: Mohamed M. El-Gasseir, Atlantic Wind Connection 
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NEXT GENERATION HARDWARE

• Refit existing transformers
• A fail-normal mode
• Fractionally rated converters

• HVDC fault protection
• High capacity, low cost cable
• High-voltage, uncooled15kV limiter

6kV Si GTO

ADEPT Goal: 13kV SiC GTO

Resilient HVDC
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Managing Non-dispatchable Generation

Source: Debra Lew, 2010 Western Wind and Solar Integration Study
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Drivers for Change

ARPA-E Workshop

The White Space

29
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Missing Control Architecture

Major Trends

• Moving to real-time, closed loop control over wide-area

• More controllable AC grid

• Multi-terminal HVDC for improved transport

Future

• Need a comprehensive architecture for control & actuation

• Need a path for incremental technology adoption
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Benefits of Routing Power

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years,
sufficient transmission capacity added each year to eliminate curtailment of renewable generation

•Power flow control to route power along underutilized paths, 80% less transmission
infrastructure required

Today: Uncontrolled Flows Power Routing
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Control Theory Control Engineering

Edge Hardware
Transmission 

Hardware

Network 
control

Architecture
(protocols, 

etc)

linear

convex

Dynamic

Real-time

Routing

Centralized

Market 
Rules

Rampable
“Baseload”

VAR SupportResilient
Multi-term

HVDC

Thin AC Power 
Flow Control

HVAC
Mesh

GENI

Scheduling

Point-point
HVDC

Storage

Validation

Validation
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